Context-Aware Programming for Hybrid and Diversity-Aware Collective Adaptive Systems

نویسندگان

  • Hong Linh Truong
  • Schahram Dustdar
چکیده

Collective adaptive systems (CASs) have been researched intensively since many years. However, the recent emerging developments and advanced models in service-oriented computing, cloud computing and human computation have fostered several new forms of CASs. Among them, Hybrid and Diversityaware CASs (HDA-CASs) characterize new types of CASs in which a collective is composed of hybrid machines and humans that collaborate together with different complementary roles. This emerging HDA-CAS poses several research challenges in terms of programming, management and provisioning. In this paper, we investigate the main issues in programming HDA-CASs. First, we analyze context characterizing HDA-CASs. Second, we propose to use the concept of hybrid compute units to implement HDA-CASs that can be elastic. We call this type of HDA-CASs hCAS (Hybrid Compute Unit-based HDA-CAS). We then discuss a meta-view of hCAS that describes a hCAS program. We analyze and present program features for hCAS in four main different contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Virtualizing Communication for Hybrid and Diversity-Aware Collective Adaptive Systems

Hybrid and Diversity-Aware Collective Adaptive Systems (HDA-CAS) form a broad class of highly distributed systems comprising a number of heterogeneous human-based and machine-based computing (service) units. These units collaborate in ad-hoc formed, dynamicallyadaptive collectives. The flexibility of these collectives makes them suitable for processing elaborate tasks, but at the same time, bui...

متن کامل

A Programming Model for Hybrid Collaborative Adaptive Systems

Hybrid Diversity-aware Collective Adaptive Systems (HDACAS) are a new generation of socio-technical systems where both human and machine peers collectively participate in complex cognitive and physical tasks. These systems are characterized by the fundamental properties of hybridity and collectiveness, hiding from users the complexities associated with managing the collaboration and coordinatio...

متن کامل

A semantic-aware role-based access control model for pervasive computing environments

Access control in open and dynamic Pervasive Computing Environments (PCEs) is a very complex mechanism and encompasses various new requirements. In fact, in such environments, context information should be used in access control decision process; however, it is not applicable to gather all context information completely and accurately all the time. Thus, a suitable access control model for PCEs...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014